Mark scheme – Controlling Reactions (H)

1 C ✓ 1 (AO2.2) Image: Total image: Tota	Questio n		tio	Answer/Indicative content	Marks	Guidance
5 a Total 1 2 A / 1 3 C / 1 4 C / 1 4 C / 1 5 a Total 1 5 a Total 1 6 Add known mass of magnesium carbonate of acid / Add known mass of magnesium carbonate / 5 Add known mass of magnesium carbonate / ALLOW just the idea of measuring the time taken for a fixed volume of gas to be produced or the volume of gas produce a fixed time	1			c√	1 (AO2.2)	
2 A ✓ 1 (AO1.1) 3 Total 1 3 C ✓ 1 (AO2.2) 4 C ✓ 1 (AO2.2) 5 a Total 4 C ✓ 1 (AO3.3) 5 A Apparatus will work ✓ 9 Image: Construct on the state of the rescuence of the state of the stat				Total	1	
Image: Second	2			A√	1 (AO1.1)	
3 C ✓ 1 (AO2.2) 4 Total 1 4 C ✓ 1(AO 1.2) 5 a Total 1 6 Total 1 7 Use of gas syringe / upturned measuring cylinder / buretle to collect gas over water ✓ Apparatus will work ✓ 6 a Grupper former ***********************************				Total	1	
5 a Total 1 4 C Total 1 12 Total 1 12 Use of gas syringe / upturned measuring cylinder / burette to collect gas over water Apparatus will work Apparatus will work eg Image: Collect gas over water Apparatus will work 0 Image: Collect gas over water Apparatus will work Apparatus will work 0 Image: Collect gas over water Apparatus will work Apparatus will work 1 Image: Collect gas over water Apparatus will work Apparatus will work 0 Image: Collect gas over water Apparatus will work Apparatus will work 1 Image: Collect gas over water Apparatus will work Apparatus will work 1 Image: Collect gas over water Apparatus will work Apparatus will work 1 Image: Collect gas over water Apparatus will work Apparatus will work 1 Image: Collect gas over water Apparatus will work Apparatus will work 1 Image: Collect gas over water Apparatus will work Apparatus will work 1 Image: Collect gas over <	3			c√	1 (AO2.2)	
4 C ✓ 1(AO 1.2) Image: Construction of the second of the seco				Total	1	
5 a Total 1 5 a Use of gas syringe / upturned measuring cylinder / burette to collect gas over water / Apparatus will work / eg Apparatus will work / eg Image: syringe / upturned measuring on // and introduction and // magnesum carbonate OR Image: syringe / upturned measuring on // and introduction and // magnesum carbonate And any three from: Measure known volume of acid / And any three from: ActLOW idea of same volume of gas at any sensible time interval action of a fixed time Add known mass of magnesium carbonate / ALLOW just the idea of measuring the time taken for a fixed time	4			C√	1(AO 1.2)	
5 a Use of gas syringe / upturned measuring cylinder / burette to collect gas over water / Apparatus will work / eg eg Image: sum carbonate or a fack due hydrochoric aid or magnesium carbonate or a fack due hydrochoric aid or hydrochydrochoric aid or hydrochoric aid or hydrochoric aid or hydrochori				Total	1	
Measure volume of gas every 30 seconds √ Repeat with different concentrations of	5	а		Use of gas syringe / upturned measuring cylinder / burette to collect gas over water Apparatus will work eg Use of gas syringe (eg Use of gas every 30 seconds Seconds solutions of Repeat with different concentrations of	5 (AO3.3 a)	ALLOW idea of same volume of acid in each experiment ALLOW idea of same mass of magnesium carbonate in each experiment ALLOW Measure volume of gas at any sensible time interval ALLOW just the idea of measuring the time taken for a fixed volume of gas to be produced or the volume of gas produced in a fixed time IGNORE measure the time taken for the reaction to finish

5.2 Controlling Reactions (H)

			Repeat using same temperature \checkmark		
	b	i	Linear scale on both x and y axes √ All points plotted correctly scores 2 marks BUT 3 or 4 points plotted correctly scores 1 mark Line of best fit through points √	4 (AO3 × 2.2)	ALLOW ± ½ square NB Check that 7.0 × 10 ⁻³ is plotted as 0.7 × 10 ⁻²
		ii	(Rate of reaction) increases √	1 (AO3.1 a)	
		ii	Idea that acid particles move faster / particles have more energy √ Idea of increased collision frequency (between acid and thiosulfate) √ Idea of more successful collisions / collisions (between acid and thiosulfate) are more energetic / more particles have the activation energy √	3 (AO2.2)	IGNORE references to 'faster' collisions IGNORE just 'more collisions'
			Total	13	
6	a		Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Analyses the results to describe that the results in relation to the volume of acid DO NOT support the prediction but that the results in relation to the concentration of the acid DO support the prediction with reference to experimental data (that includes fair testing) <u>AND</u> explains the results in detail using the reacting particle model, using the idea of collision frequency, that the greater the concentration the faster the reaction rate. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Analyses the results to describe that the results in relation to the volume of acid DO NOT support the prediction	6(AO 3 × 3.2b 3 × 2.2)	 AO3.2b Analyse information and ideas to draw conclusions. <u>VOLUME</u> To include fair testing, candidates should compare EXPERIMENTS 1 & 2 <u>CONCENTRATION</u> To include fair testing, candidates should compare EXPERIMENTS 2 & 3 results (in experiments 1 & 2) show as volume decreases reaction time does not change so reaction rate does not change results show that as concentration increases reaction time gets less so reaction rate gets faster the reaction in experiment 3 is faster, or has a shorter reaction time, than experiment 2 AO2.2 Apply knowledge and understanding of scientific enquiry, techniques and procedures. concentration is higher in experiment 3 (than experiment 2) acid particles are more crowded in experiment 3 / acid particles are closer together / more acid particles per unit volume / more acid particles per cm³ / more acid particles in the same space

AND that the results in relation to the	 more (successful) collisions per second / collisions
concentration of the acid DO support	more often / increased collision frequency / more
the prediction with reference to	chance of a collision
experimental data	
AND	IGNORE references to 'faster' collisions
explains the results using the reacting	
particle model, using idea of more	NB Correct points may be credited from annotation on
collisions (rather than collision	results table
frequency) that the greater the	
concentration the faster the reaction	Examiner's Comments
rate.	
	This 6-mark, Level of Response, question assessed AO2 a
There is a line of reasoning presented	AO3. At Level 3 (5 - 6 marks) candidates needed to analyse
with some structure. The information	the student's results to describe if the results supported the
presented is relevant and supported by	prediction with reference to experimental data that include
some evidence.	fair testing. At this level candidates also needed to explain
	results using the idea of the reacting particle model and
Level 1 (1–2 marks)	collision frequency.
Analyses the results to describe that	
the results in relation to the volume of	Some of the responses were excellent, showing a clear
acid DO NOT support the prediction	understanding of fair testing and rates of reaction.
OR	
analyses the results to describe that	The answers of lower ability candidates often
the results in relation to the	
concentration of the acid DO support	 did not treat the predictions for volume and
the prediction	• un nor rear me previouons for volume and
OR	looked for experimente where the volume was low
evolutions using the reacting particle	and the concentration was high and (any is a set
model using idea of more collicions	and the concentration was high and / or vice versa
(rather than collision frequency) that	criose experiments where the mass of magnesium
the greater the concentration the	was also Varied
factor the reaction rate	 looked for experiments where the reaction time was
laster the reaction rate.	lowest (experiments 3 & 5) and drew the conclusio
There is an attempt at a lariest structure	that the volume had to be high (as well as the
with a line of reasoning. The information	concentration) to get a faster reaction rate
with a line of reasoning. I ne information	criticised that data for not having an experiment wh
is in the most part relevant.	the smaller volume (25cm ³) and higher concentration
	(2.0 mol / dm ³) were used together.
U marks	
No response or no response worthy of	Exemplar 3
credit.	IIIvanaa loeas anoori na taacaniñ haincia linolal li Aori, suswat.
	His results do not support the first part of his conturious
	voume are not change the late of leaction as this does not change how of then the particles collide. This can be seen
	in experiments 1 and 2, where only the value was
	changed and the reaction time stoyed at 30 seconds.
	of acid speeding up the reaction. This can be seen in conserving
	3 and A where 2 and 3, where vice using the concentration
	from (mal/dm3 to Z mal/dm3 caused the traction time
	This is because increasing the concentration of the
	ac id means that there are more acid particles, which 16
	1) causes them to be more crowded. This leads
	TO a great more the quest common between the
	speeds up the rate of leaction.
	This is a Level 3 (6 mark) response, which has correctly
	identified that in experiments 1 & 2 only the volume of acid i

			acid is changed. The candidate has correctly described that the results in relation to the volume of acid do not support the prediction but that the prediction is supported in relation to concentration. The candidate explains the results clearly using the idea of collision frequency.
			Exemplar 4 The students results don't support "The prevent the volume of acid" part because Exponent 1 and 4 used a smaller volume of acid (55m?) than all the others which used 30 cm². The reasons because they beth have 30 second reaction times. Other experiments like 3 have higher volume of acid (50m?) but a lower reaction times. Other experiments like 3 have higher volume of acid (50m?) but a lower reaction times. Other experiments like 3 have bigher volume of acid (50m?) but a lower reaction times. Other experiments like 3 have bigher volume of acid (50m?) but a lower reaction to be ((50m?)) The greater the concentration of acid? is backer up because aspectionated 3 and 5 have do higherst consentration of acid (20 my/dm?) and the fastest (section time of 15 second) This predictions are perfect to support the particle collision theory but his results do not back up his frediction. You would expect a higher cancer his results a smaller volume to have a higher rate of reaction. This is because, his results to act sepected. Another a higher rate of reaction. This is because, his results as maller volume to have a higher rate of reaction. This is a Level 2 (4 mark) response. While the candidate appreciates that the results in relation to the volume of acid do not support the prediction but that the prediction is supported in relation to concentration, they have not shown an appreciation of fair testing. The candidate explains the results clearly using the idea of more collisions, rather than collision frequency.
t	 Any two from: Heating the acid: idea that acid particles move faster / particles have more energy √ idea of increased collision frequency √ idea of more successful collisions / collisions are more energetic √ 	3(AO 3 × 2.2)	ALLOW the reaction time will decrease / the reaction time will be less than 30 seconds

	AND Predicted reaction time – Any time less than 30s √		DO NOT ALLOW reaction time increases DO NOT ALLOW faster reaction time Examiner's Comments Good responses to this question described that heating the acid would give the particles more energy and / or make the particles more faster, resulting in more frequent collisions
	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 1.67×10^{-3} (g / s) award 3 marks $8.33 \times 10^{-4} \times 240 = 0.19992 = 0.2$ or $100 \times 2.00 \times 10^{-3} = 0.2$ or $50 \times 4.00 \times 10^{-3} = 0.2 \checkmark$ $0.2 \div 120 = 0.00166666$		ALLOW 1.66 × 10 ⁻³ / 1.7 × 10 ⁻³ for 2 marks IGNORE 0.0016 / 1.6 × 10 ⁻³
с	or 0.2 ÷ 120 = 0.00167 √ = 1.67 × 10 ⁻³ (g / s) √	× 2.2 1.2)	ALLOW 1.66 × 10 ⁻³ / 1.7 × 10 ⁻³ for 2 marks IGNORE 0.0016 / 1.6 × 10 ⁻³
	<u>OR</u>		ALLOW ECF from incorrect calculation for 3 sig fig and standard form mark
	8.33 × 10 ⁻⁴ × 2 √		Examiner's Comments
	= 0.001666 or 0.00167 √		Many candidates gained 3 marks for a correct answer of 1.67×10^{-3} .
	= 1.67 × 10 ⁻³ (g / s) √		AfL
			Appendix 5e of the specification lists the mathematical skills that will be assessed within the context of relevant chemistry. Skill M2a requires candidates to use an appropriate number of significant figures. Incorrect rounding to 3 significant figures, giving 1.66×10^{-3} , was a common error.

		Total	12	
7	i	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 100 award 3 marks Round each number to 1 significant figure: Silicon dioxide nanoparticle 20 nm \checkmark Silicon atom 0.2 nm \checkmark Number of times larger \cong 20/0.2 = 100 \checkmark	3(AO 2.2)	ALLOW (18 ÷ 0.22 =) 81.8 / 82 / 80 for 1 mark if no other mark awarded ALLOW (18 ÷ 0.2 =) 90 for 2 marks if no other mark awarded <u>Examiner's Comments</u> Good responses to this question required candidates to use estimating skills and round the data in the question to 1 significant figure in order to work out the answer. Most candidates simply divided 18 by 0.22 and then rounded their answer to 1 significant figure to obtain an answer of 80, only gaining 1 mark. AfL Appendix 5e of the specification lists the mathematical skills that will be assessed within the context of relevant chemistry. Skill M1d requires candidates to make estimates of the results of simple calculations.
	ii	(Silicon dioxide) nanoparticles have a greater surface area (to volume ratio than powder) / ORA ✓ Idea that chemical reactions take place on the surface of a catalyst ✓ Idea that there will be more (frequent) collisions / the rate of reaction will be faster ✓	3(AO 1 × 2.1 2 × 1.1)	ALLOW more active sites / idea that there are more places for the reaction to occur on IGNORE idea that there is more area of catalyst to react with Examiner's Comments High ability candidates were able to describe that nanoparticles have a greater surface area to volume ratio. They appreciated that chemical reactions take place on the surface of the catalyst and so the larger surface area would help more collisions between reactant particles. Lower ability candidates did not appreciate that this was heterogeneous catalyst activity. Misconception A common misconception is that the catalyst takes part in the reaction and reacts with the reactants.
		Total	6	
8		В	1	

5.2 Controlling Reactions (H)

			Total	1	
9			D	1	
			Total	1	
1 0		i	Rate increases More particles have energy above that of activation energy (1) More successful collisions (per second) (1)	2	No mark for rate increases but must be there to award two marks. Rate decreases give 0 marks for the question
			Rate decreases		No mark for rate decreases but must be there to award two marks.
		ï	Less particles per unit volume (1) Fewer collisions per second / decreased collision frequency (1)	2	Rate increases give 0 marks for the question ALLOW less crowded particles ALLOW collisions less often
			Total	4	
1	а		Suitable container for the reactants, e.g. flask, boiling tube or test tube (1) Use of a gas syringe / upturned burette with water in trough of water / upturned measuring cylinder with water in trough of water (1) The method actually works (1)	3	20 40 60 80 100 cm ³ gas sy dilute sulfuric acid zinc
	b	i	To allow a comparison between with and without the added substance (1)	1	
		ii	Idea that the rate of reaction will change if concentration is changed (1)	1	It is a fair test is not sufficient ALLOW if concentration is increased the rate of reaction is increased ALLOW to ensure there are the same number of acid particles present / same number of acid particles per unit volume
		ii i	Copper Because the reaction is faster (1) There is no change in appearance (1)	2	No marks for copper on its own If substance other than copper given then 0 marks for the question
		i v	Measure mass of catalyst before and after (1)	1	
		V	(Relative rate) between above 1 and below 10 because of smaller surface area / less exposed particles / less collisions (2)	2	No marks for the prediction on its own No marks for whole question if prediction incorrect

	Total	10	